
International Journal of Computer Trends and Technology Volume 73 Issue 4, 108-113, April 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I4P115 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Comparative Analysis of Spark Connect and REST APIs:

Architecture, Performance, and Use Cases

Ajinkya Potdar

Senior Technical Program Manager, Texas, USA.

Corresponding Author : ajinkya.potdar@gmail.com

Received: 16 March 2025 Revised: 15 April 2025 Accepted: 23 April 2025 Published: 30 April 2025

Abstract - This paper presents a comparative analysis of Spark Connect and REST APIs, two prominent technologies

facilitating the communication between applications and data sources. Spark Connect, a relatively new feature in Apache

Spark, introduces a client-server architecture that enhances several key tenets of the overall solution while supporting multiple

programming languages. On the other hand, REST APIs, a traditional solution, remain the backbone of web services, offering

a standardized, scalable, and stateless approach to data exchange. This research contributes to the field by exploring the

architectural differences, communication protocols, data handling mechanisms, scalability, security implications, and

performance trade-offs of both technologies. Spark Connect excels in interactive data analysis and remote Spark development,

whereas REST APIs dominate web services, microservices, and mobile app integration. By virtue of the contextual analysis

and information, we assess the strengths and limitations of both solutions, enabling organizations to make informed decisions

to select the appropriate technology for their use cases. This analysis emphasizes the importance of adopting the right solution

to ensure cost and performance optimization in a secure environment.

Keywords - Big data, Data analytics, Spark Connect, REST API, Data access methods.

1. Introduction
In today’s big data and distributed computing

ecosystem, seamless and efficient communication between

applications and data sources is quintessential. Spark

Connect 1 and REST APIs are two leading technologies that

address this need.

Spark Connect is a new feature in Apache Spark 7 that

offers a client-server architecture for interacting with Spark

clusters. On the other hand, REST APIs are the cornerstone

of web services to facilitate this data exchange.

Given that Spark Connect is new, the objective of this

paper is to provide a comparative analysis of Spark Connect

and REST APIs, taking a deep dive into their strengths,

weaknesses, and use cases, which would help the users

choose the right data access method to achieve optimum

performance.

2. Spark Connect
Spark Connect is a protocol that enables client

applications to interact with a remote Spark server. Similar to

how applications connect to a database via a JDBC driver,

this protocol allows clients to request operations from a

Spark server. This decoupled approach renders many

benefits.

2.1. Key characteristics of Spark Connect [3]

2.1.1. Stability

By decoupling client programs from the Spark driver,

Spark Connect provides higher fault tolerance. If a client

program encounters a memory issue or crashes, it will not

affect the entire cluster or other applications running on it.

2.1.2. Upgradeability

Spark drivers can be upgraded without requiring

customer application changes to support forward

compatibility as well as simplify the maintenance period.

Consumers will therefore, benefit from improved features

and innovations from Spark without stopping running

software.

2.1.3. Debuggability

Through Spark Connect, programmers are authorized to

debug code interactively in development and directly from

the preferred development environments. It will simplify the

development process as well as improve the speed to identify

where faults lie with simplicity.

2.1.4. Language Support

Spark Connect supports clients written in other

languages, that as Python GO and also allows JVM-based

languages to communicate with Spark as well as expose

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ajinkya Potdar / IJCTT, 73(4), 108-113, 2025

109

Spark to more developers. Spark Connect marks a major

shift from Spark’s traditional monolithic driver architecture

to a more scalable and flexible client-server model. This new

design makes it easier to deploy and manage Spark

applications, particularly in cloud environments and multi-

tenant scenarios. Instead of requiring a full Spark installation

on the client machine, Spark Connect allows applications to

connect to a remote Spark cluster using just a lightweight

client library.

This simplifies deployment, making it especially useful

for applications running in environments with limited

resources.Here is a simplified explanation of how Spark

Connect works:

• The client application establishes a connection with the

spark server using gRPC, a high-performance open-

source framework for remote procedure calls.

• When the client application submits a data frame query,

Spark Connect converts it into an unresolved logical

plan; this plan outlines the desired operations without

specifying how they should be executed; think of it as

the high-level blueprint for the query.

• This unresolved logical plan is then encoded using

protocol buffers, a language-agnostic mechanism for

serializing structured data, and sent to the Spark Server.

• The Spark server receives the plan, optimizes it using

sparks catalyst optimizer and executes it on the cluster.

• The results of the query are streamed back to the client

application as Apache Arrow record batches a

standardized columnar format for in-memory data

representation this allows for efficient data transfer and

processing.

• The Spark Connect is best suited for many use cases,

including Interactive Data analysis Spark embedded into

text editors and notebooks and remote development

without SSH; it also offers improved utilization of

resources and lower client application startup times.

2.2. Limitations of Spark Connect [8]

While Spark Connect offers a more flexible and

decoupled approach to interact with Spark clusters, it is

essential to consider its limitations when planning its

adoption.

2.2.1. Limited API Support

Even though Spark Connect works with many PySpark

and Scala APIs, support for some, are still missing. For

example, key components like SparkContext and RDD aren’t

supported in any version of Spark Connect.

2.2.2. Performance Overhead

The client-server model introduces network latency,

especially when handling large datasets. Serialization and

deserialization add computational overhead, potentially

slowing down processing.

3. REST API
REST APIs [5] place an architecture constraint of a

standard upon designing web services. REST APIs apply

HTTP to communicate and typically mean the exchange of

JSON or XML data between a client and a server. A REST

API, however, strictly adheres to the principles of REST

architecture fundamentals, such as statelessness and

decoupling of the server and the client. This affects the

scalability and processing of data. REST APIs, by adhering

to these principles, are generally more scalable and efficient

in handling large datasets.

3.1. Key Characteristics of REST APIs

3.1.1. Uniform Interface

Any request passed on by a REST API must follow the

constraints of that API structure. As such, when a client is

issuing the request, it must put each piece of information in

the position where any other client would put it. A good

example is the URL or uniform resource locator for

accessing resources using HTTP, which is only one of the

several types of uniform resource identifiers with wider

scopes.

3.1.2. Client-Server Separation

REST APIs require client and server applications to be

completely independent of each other. The client should

know nothing more than the complete name of the resource it

desires in the virtual space provided by the API, other than

that the client and server know nothing of each other except

as communicated by API transactions.

3.1.3. Statelessness

Each client request must include all information

necessary to handle it and the server does not need to retain

any information about the request once it receives it. REST

API design does not allow to storage of session data between

requests.

3.1.4. Capability

As opposed to the server’s per-client statelessness,

resources need to be cacheable somewhere in or between the

client and server. For the server, for instance, when a

particular resource has already been served, it is expected to

be accessed again by some source.

3.1.5. Layered System Architecture

REST APIs are constructed based on a layered

architecture. This means that the system is separated into

different layers, with each layer having a specific set of

functionalities and responsibilities. This layering offers

several benefits, such as improved scalability, maintainability

and security. The layered architecture promotes loose

coupling between different components of the system. Each

layer speaks only to the layers next to it and does not care

about the internals of the other layers. This segregation of

concerns enhances the modularity and ease of maintenance

of the system. The data access layer changes, for example,

Ajinkya Potdar / IJCTT, 73(4), 108-113, 2025

110

would not necessarily affect the business logic layer or

presentation layer if the interfaces between layers remain

unchanged. Layered architecture also contributes to

improved scalability because it places intermediaries like

load balancers or API gateways in the presentation, which

can distribute traffic on many servers and handle increased

demands without having any effect on the lower-level

business logic or data access layer. Further, the layered

structure is more secure. It enables the implementation of

security controls like authentication and authorization inside

specific layers to protect sensitive resources and data without

affecting other parts of the system.

3.1.6. Code on Demand

While REST APIs can and do often simply return data to

be used by the client, it is necessarily common for code to be

delivered to run on the client (For example, Java objects or

web applications in JavaScript). If this is the case, then such

code may only be run on demand by the client. REST APIs

have wide usage in web services integration in mobile app

development data access and microservices.

3.2. Limitations of REST APIs

Despite their strengths, REST APIs have some inherent

disadvantages:

3.2.1. Over-Fetching and Under-Fetching of Data

REST API will often return more data than the client's

needs (over-fetching) or even require multiple requests to

retrieve all the needed data (under-fetching). This can lead to

increased bandwidth use and slower response times.

3.2.2. Possible Versioning Challenges

As the REST APIs evolve, changes in the API may

cause incompatibility with existing applications. This

requires careful versioning and management of changes in

the API so that existing integrations are not disrupted.

3.2.3. Limitations in Dealing with Real-Time Data

REST APIs are not well equipped to deal with

applications requiring real time updates of data. Their

request-response paradigm can introduce latency and, hence,

are not suited for real-time applications.

4. Comparative Analysis
Table 1. Spark connect vs REST API

Feature Spark Connect REST API

Architecture Client-Server Client-Server

Communication

Protocol
gRPC HTTP

Data Format Apache Arrow JSON, XML, etc

Primary Use

Case

Interactive data

analysis, remote

Spark

development

Web Services,

data exchange,

microservices.

Language

Support
Relatively new

Mature and

widely adopted.

Both Spark Connect and REST APIs feature client-

server design but differ with regard to their communication

protocol, data representation and primary usage. Spark

Connect is specifically designed to talk to Spark clusters,

while REST APIs are purpose-agnostic and most frequently

applied for an assortment of web services. It must be noted

that not all REST APIs are in accordance with the REST

architecture style and such non-RESTful APIs may be

limited in scalability as well as in data management.

5. Detailed Comparison
Although the aforementioned table gives a bird's eye

view comparison, let's discuss in detail the individual

differences between spark connect and REST APIs.

5.1. Communication
Spark Connect uses gRPC, a high-performance

framework with advantages in efficiency and language

support. REST APIs are layered over HTTP, a mature

protocol that is widespread but possibly less efficient in

managing data communication.

5.2. Data Handling

Spark Connect leverages Apache Arrow as the native

data format - a columnar format designed for efficient in-

memory data processing and transfer. While REST APIs can

support several data formats, like JSON and XML,

depending on the use case, might need extra processing or

conversion.

5.3. Job Submission

As Spark Connect can handle and resolve logical plans

that are optimized and required by the server, it enables more

dynamic and flexible job submission. REST APIs require

more structured requests with predefined endpoints and

parameters.

5.4. State Management

While REST APIs are intrinsically stateless, Spark

Connect leverages Spark’s internal state management

framework. This could have implications for applications

that require session management or stateful interactions.

5.5. Scalability

Both Spark Connect and REST APIs are scalable but

they're scalable in different ways. Spark Connect uses

sparsely distributed processing capability for handling big

datasets and large request volumes. The decoupled

architecture helps client applications to scale independently

from the Spark driver in order to prevent resources from

competition and increase overall cluster stability.REST APIs

scale since they are stateless and cached statelessness makes

it possible for servers to serve requests without worrying

about retaining session information. Caching also has the

effect of increasing scalability because it reduces handling

redundant requests.

Ajinkya Potdar / IJCTT, 73(4), 108-113, 2025

111

5.6. Security Implications

Spark Connect relies on Spark’s security features [6] for

authentication, authorization and encryption. These include

Kerberos authentication, SSL encryption for data transport,

and Access Control Lists (ACLs). Web UI's correct

configuration of these security features is necessary to

protect Spark clusters and data features from unauthorized

access. REST APIs have no built-in security and therefore

the developers ought to implement security practices

carefully themselves. They include:

• Transport Layer Security (TLS):

• Encrypting data in transit to protect sensitive data.

• Error handling

• Input data validation

• Rate Limiting

• API Gateways

• Authentication and Authorization: Verifying client

identities and granting appropriate permissions.

5.7. Performance Implications

The performance of both Spark Connect and REST APIs

are subject to various factors. Network latency and

bandwidth will inevitably impact the responsiveness of

applications using either method.

However, the efficiency of gRPC should make Spark

Connect more robust in environments with high latency or

limited bandwidth. The size and complexity of the data being

transferred play a crucial role. The benefits of protocol

buffers in terms of reduced size and faster parsing become

more significant as data structures become larger and more

intricate.

Spark Connect can improve performance by minimizing

resource utilization. For the purpose of this research, simple

and complex processing was done on the Google Cloud

Platform for both Spark Connect and REST API to compare

the execution times.

 Table 2. Spark Connect vs REST API Execution time comparison

Operation
Spark Connect

Execution Time

REST API

Execution

Time

Simple Query ~1-2s ~5-10s

Complex Query

(multijoin)
~3-5s ~7-12s

Large Dataframe

Processing
~5-8s ~15-20s

5.8. Adoption Rate

There is no reliable data in terms of percentage for

adoption of Spark Connect as it is relatively new and is a

developing trend within the Apache Spark ecosystem.On the

other hand, the industry data shows that REST APIs are

overwhelmingly dominant, with approximately 93.4% of

API developers using them [9].

6. Use Cases
6.1. Spark Connect

6.1.1. Interactive Data Analysis

Data scientists and analysts can use Spark Connect to

interact with Spark clusters from notebooks and IDEs,

enabling efficient data exploration and analysis and also

building interactive dashboards that display real-time or near

real-time insights from large datasets.

6.1.2. Remote Spark Development

With Spark Connect, developers can build Spark

applications on remote clusters by embedding Spark in text

editors without needing SSH.

6.1.3. Building Language-Agnostic Spark clients

Spark Connect supports clients written in various

languages, expanding the reach of Spark beyond JVM-based

languages.

6.2. REST API

6.2.1. Web Services Integration

REST APIs ensure interoperability between various web

services, allowing data to be seamlessly exchanged and

integrated.

6.2.2. Mobile Application Development

Mobile applications can make use of REST APIs to gain

access to server data and capabilities enabling connected

mobile experiences to be created.

6.2.3. Data Access

REST APIs provide a standard way of accessing data

from most sources, including databases, cloud storage and

social networks.

6.2.4. Microservices

REST APIs are usually used to integrate and

communicate between microservices within a distributed

system.

6.2.5. Internet of Things (IoT) [10]

IoT devices use REST APIs to exchange data with

servers, enabling remote monitoring, control, and data

collection. This is imperative for applications like smart

homes and industrial automation.

7. Industry-Specific Adoption of Spark Connect

[11]
Joom, a global e-commerce site with tens of millions of

affordable products for an enormous user base, relies heavily

on Apache spark-based data analysis with over 1000 custom-

built spark applications and a Kubernetes/EKS-based data

platform; Joom's utilization of spark connect offers insightful

feedback on its performance and problems in such a large

production environment of this scale due to the size and

Ajinkya Potdar / IJCTT, 73(4), 108-113, 2025

112

complexity of Joom's Spark infrastructure that their

experience has high applicability in learning the weaknesses

and strengths of Spark Connect in high-demand

environments. The primary motivation for Joom to adopt

Spark Connect was the desire for a more efficient and

scalable Spark infrastructure. In moving toward a shared

Spark Connect server, Joom aimed to move away from the

limitations of maintaining a high volume of individual Spark

applications, with the end goal of reducing resource

consumption and optimizing utilization of their Spark

cluster. Their main use case is to execute their large

collection of internal Spark applications on a centralized

Spark Connect server. In order to manage this diverse

workload, Joom created a smart system that automatically

determines whether to start a given application via Spark

Connect or as a regular, stand-alone Spark application based

on its historical resource usage patterns.

This decision-making automates considering metrics

such as Total Task Time, Shuffle Write and Disk Spill for

dynamic workload management. There have been multiple

benefits for Joom since it adopted Spark Connect. It has

recorded a significant reduction of client application memory

footprint as these applications do not require their own Spark

Driver. Also, the shared nature of the Spark Connect server

has led to more efficient usage of executor resources as they

could be shared dynamically and allocated to different

concurrent client applications. Application startup times have

also improved as a result of Spark Driver on the server

already running and being instantly available for processing

the client request. From the management perspective, Joom

has simplified the deployment and maintenance of client

applications by maintaining only a single JAR file for each

application that can be used in both Spark Connect and

traditional Spark modes.

 Despite these advantages, Joom has also experienced

several challenges in its implementation of Spark Connect

certain spark features such as spark

Session.sessionState.catalog and

sparkSession.Sparkcontext.hadoop Configuration, was

discovered to be incompatible with Spark Connect. Joom

also had to avoid running very long-running and very

resource-intensive applications on Spark Connect due to the

stability limitations of the shared server. Another issue is

managing very high concurrency loads on a Spark Connect

server, particularly in light of the efficiency of the underlying

Spark Task Scheduler's resource allocation. The use of third-

party Spark components also had the associated risk of

compatibility with Spark Connect architecture. Specifically,

Joom experienced some instability issues with Spark

Connect version 3.5, where client application jobs would

randomly hang, necessitating the implementation of

mitigation processes. Additionally, utilization of the

useFetchcache=true property had the risk of increased disk

space utilization on executors. Getting some Spark

applications to function correctly as Spark Connect clients,

especially those that are Third-party component-based and

not designed with Spark Connect in consideration, was also a

non-trivial task. These experiences indicate that while Spark

Connect offers very important benefits, it requires diligent

attention to application compatibility resource management

and potential stability issues, especially in its early releases.

8. Future Trends
Legacy APIs, as much as they form the foundation of

contemporary software development, face certain constraints

in addressing the dynamic and increasingly complex

requirements of data consumers. Such challenges are driving

the development and adoption of new API protocols and

interfaces that provide improved efficiency, flexibility, and

intelligent data exchange. Protocols like GraphQL and gRPC

are coming up as strong alternatives to REST. GraphQL

enables clients to request specific data, thus minimizing

issues of over-fetching and under-fetching, and operates

through a single endpoint for all queries. The gRPC, on the

other hand, is a high-performance, open-source framework

that excels in environments where speed and efficiency are

of foremost importance, particularly in microservices

architectures and real-time systems - thanks to its support for

bidirectional streaming and efficient communication.

In addition, Artificial Intelligence is radically changing

the future of API development. AI-based tools are being

created to automate various stages of the API lifecycle,

including testing for bugs and inconsistencies, generating

documentation through natural language processing, and

streamlining deployment processes. Additionally, AI fortifies

API security by analyzing usage patterns, identifying

anomalies, and rapidly addressing potential threats. Looking

forward, a shift towards more adaptable and intelligent

interfaces are expected. AI interfaces, powered by advanced

AI models, may transcend the rigid frameworks of traditional

APIs, enabling them to comprehend and interpret natural

language queries and respond dynamically based on the

underlying intent of a request. This transformation would

render data access more intuitive and accessible to a broader

audience.

9. Conclusion
Spark Connect and REST APIs are valuable

technologies for enabling communication and data exchange

in distributed computing environments. Spark Connect offers

a new approach to interact with Spark clusters, while REST

APIs remain a popular choice for web services and data

integration. Both technologies are expected to continue

evolving and play significant roles in the future of big data

processing and application development. This comparative

analysis highlights the distinct strengths and use cases of

Spark Connect and REST APIs. Spark Connect excels in

stability, upgradability and debuggability, making it ideal for

complex Spark applications and interactive data analysis. Its

Ajinkya Potdar / IJCTT, 73(4), 108-113, 2025

113

decoupled architecture and language support enhance

flexibility and resource efficiency. Conversely, REST APIs

prioritize simplicity, flexibility, and cost-effectiveness,

making them well-suited for web services, data exchange,

and microservices.

Their widespread adoption and mature ecosystem ensure

broad capability and ease of use. In conclusion, while both

technologies have their own strengths and limitations, they

would render a profound influence on core architectural

tenets such as performance, security, and cost. This analysis

underpins the importance of selecting the right technology

for optimal outcomes and alignment with the future vision in

distributed landscapes.

Conflicts of Interest
There is no financial or monetary gain for the author.

The views expressed in this paper solely belong to the author

and should not be attributable to his employer. This is a

disclosure that the author’s employer might have used Spark

Connect.

Funding Statement
The research paper has been self-funded.

References
[1] High-Level Spark Connect Architecture, Apache Spark. [Online]. Available: https://spark.apache.org/spark-

connect/#:~:text=Spark%20Connect%20is%20a%20protocol,JDBC%20driver%20%2D%20a%20query%20spark/

[2] The Spark Connect Overview - Spark 3.5.4 Documentation, Apache Spark. [Online]. Available:

https://spark.apache.org/docs/3.5.4/spark-connect-overview.html

[3] Stefania Leone et al., Introducing Spark Connect - The Power of Apache Spark, Everywhere – Databricks, 2022. [Online] Available:

https://www.databricks.com/blog/2022/07/07/introducing-spark-connect-the-power-of-apache-spark-everywhere.html

[4] What is REST API? IBM, 2025. [Online]. Available: https://www.ibm.com/think/topics/rest-

apis#:~:text=A%20REST%20API%20(also%20called,transfer%20(REST)%20architectural%20style/

[5] The Mulesoft Website. [Online]. Available: https://www.mulesoft.com/api/rest/top-3-benefits-of-rest-apis/

[6] The Spark Documentation on Security. [Online]. Available: https://spark.apache.org/docs/latest/security.html

[7] Bill Chambers, and Matei Zaharia, Spark: The Definitive Guide: Big Data Processing Made Simple, O'Reilly Media, pp. 1-606, 2018.

[Google Scholar] [Publisher Link]

[8] The Spark Documentation on Security. [Online]. Available: https://docs.cloudera.com/data-engineering/1.5.4/spark-connect-

sessions/topics/cde-spark-connect-session.html

[9] J. Simpson, 20 Impressive API Economy Statistics, 2022. [Online]. Available: https://nordicapis.com/20-impressive-api-economy-

statistics/#:~:text=17.,a%20staggering%2093.4%25%20adoption%20rate/

[10] How to use the IoT Central REST API to Control Devices, 2024. [Online]. Available: https://learn.microsoft.com/en-us/azure/iot-

central/core/howto-control-devices-with-rest-api/

[11] Sergey Kotlov, Adopting Spark Connect, 2024. [Online]. Available: https://towardsdatascience.com/adopting-spark-connect-

cdd6de69fa98/

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Spark%3A+The+definitive+guide%3A+Big+data+processing+made+simple&btnG=
https://www.google.co.in/books/edition/Spark_The_Definitive_Guide/pitLDwAAQBAJ?hl=en&gbpv=0

